Organic Molecules Worksheet: Review

Read through each section and answer the following questions

Organic molecules are the molecules which exist in all living things. They are life’s building blocks. All things are formed from these organic molecules. There are four categories of organic molecules: Carbohydrates, lipids, proteins and nucleic acids.

1. How are organic molecules related to all living things?
 Organic molecules come from living things and are involved in all cell processes.

2. Name four categories of organic molecules which form the basis of all living things:
 a. carbohydrates b. lipids c. proteins d. nucleic acids

Organic molecules have four common characteristics. First, they are all carbon based, meaning they all contain carbon. They are formed from just a few elements which join together to form small molecules which join together, or bond, to form large molecules. The third characteristic of all organic molecules is that each is kind of organic molecule is built from a single type of building block. For example, the building block of carbohydrates is sugar, the building block of lipids is fatty acids, the building block of protein is amino acids and the building block of nucleic acids is the nucleotide. When these building blocks are joined together, they form a large molecule (polymer), just as bricks joined together form a wall. For example, sugars join together to form a carbohydrate.

3. All of the organic molecules are based on which element? Carbon

4. Many times, the molecules join to form long chains with what kind of backbone? Smaller molecules (carbon chains)

5. How are the building blocks of organic molecules like bricks? Because they stack together.

6. What is the building block of each of the four classes of organic molecules?
 a. The building blocks of carbohydrates are sugars
 b. The building blocks of lipids are fatty acids
 c. The building blocks of proteins are amino acids
 d. The building blocks of nucleic acids are nucleotides

7. What is a polymer? A long chain of smaller molecules

The last common characteristic of all organic molecules is that their form determines their function. That means that their shape determines how they will behave and how they will react with other molecules. For example, the order of amino acids in a protein will determine the shape and function of the protein just as the order of words in a sentence shapes the meaning of the sentence.

8. What determines how organic molecules will look and behave? The order of the molecules
9. What are the four common characteristics of all organic molecules?
 a. all carbon based
 b. smaller molecules join to make larger polymers
 c. each type is built from a specific building block
 d. their form or shape determines their function

Carbohydrates

Carbohydrates are the most common organic molecule because they make up most plant matter. They are made from carbon, hydrogen and oxygen. Their building block, a single sugar, is called a monosaccharide. Sugars (monosaccharides) consist of carbon rings. When two monosaccharides, or sugars, combine, they form a disaccharide (di = two). When more than two monosaccharides join together, a polysaccharide (poly = many) is formed.

10. What are the elements contained in carbohydrates? C, H, O
11. What is the building block of carbohydrates? A single sugar (monosaccharide)
12. What is a monosaccharide? A carbon ring
13. What is a disaccharide? Two sugars joined together
14. How does a polysaccharide differ from a disaccharide? A pol is more than 2 sugars joined together

There are three classes of carbohydrate polysaccharides. The first is starch. Starch is a carbohydrate used in food storage in plants. Potatoes, pasta and rice are rich in starch. Starches are very valuable because they provide a quick form of energy for the body. The second is glycogen. Glycogen is used for food storage in animals. The third is cellulose. Cellulose is used for structural support in plants (stems, leaves).

15. What are the three classes of carbohydrates?
 a. starch
 b. glycogen
 c. cellulose
16. Which involves food storage in plants? Starch
17. Which involves food storage in animals? Glycogen
18. What is cellulose used for? Stems and leaves of plants for support
19. Why would an athlete have a big pasta dinner the night before a race? To have enough energy stored up for whatever physical activity they'll be doing

Sugars can be detected in foods through a simple lab test. To find out if a food contains starch, iodine (a reagent) is placed on the food. A food containing starch will turn black when in contact with iodine. A test for simple sugars involves mixing the food with a liquid blue reagent called Benedict's solution and then heating the mixture. If the food is positive for simple sugars, the heating process will cause the Benedict's solution to turn red, orange, or green.

Lipids

Lipids are a class of organic molecules which includes fats and oils, and has the function of long-term storage of energy in the body. The building block of lipids is the fatty acid, which is a
chain of carbons with hydrogen attached to each side. The “head” of Saturated fats have two carbons attached to each carbon (except the one at the end), are unhealthy fats usually from animal sources, and solid at room temperature. Unsaturated fats are missing at least one hydrogen, are kinked in shape, are healthy and from plant sources, and liquid at room temperature.

20. What is the building block of lipids? fatty acids
21. Name two specific examples of lipids: fats oils
22. Describe the structure of a fatty acid: chain of carbons with two hydrogens attached to each side.
23. What is a saturated fatty acid? have two hydrogens attached to each carbon.

Proteins

Proteins are organic molecules that form muscles, transport O2 (hemoglobin), and act as hormones and enzymes. Most importantly, proteins determine how our bodies look and function. Their building block is the amino acid. Proteins are made of amino acids linked by a peptide bond. When groups of amino acids are joined together, a protein is formed.

24. What are some of the functions of proteins? form muscles, transport O2, enzymes
25. What is the building block of proteins? amino acids
26. What is the name of the bond that joins amino acids? peptide bond

There are about 20 different kinds of amino acids. These amino acids consist of five separate parts: a central carbon atom, a carboxyl group (-COOH), an amino group (-NH2), a hydrogen, and a ‘R’ group. The only difference in the 20 kinds of amino acids is the “R” group. Some “R” groups are very small, others are large, and others form chains and rings. The sequence and shapes of the “R” groups control the shape and function of the protein.

27. How many different amino acids are there? 20
28. What part of the amino acid varies from one amino acid to another? R group
29. What determines the shape and function of a protein? the sequence of R groups

Nucleic Acids

The fourth class of organic molecules is the nucleic acids. This class involves the genetic materials, DNA and RNA. DNA is the blueprint of life because it contains instructions on how to make proteins in the body. Each individual’s DNA is unique, which means that each individual has a unique set of proteins; that is why each of us looks and behaves differently. RNA creates a copy of DNA because DNA can’t leave the cell’s nucleus, and because proteins are constructed outside of the nucleus in the cytoplasm -- the RNA is necessary to carry the instructions from DNA to the cytoplasm where the protein is made.

30. What are the two types of nucleic acids? DNA and RNA
31. What is the role of DNA? contains instructions on how to make proteins in the body.
32. How does the role of RNA differ from that of DNA? DNA stores the information and the RNA delivers it from the nucleus to the cytoplasm.

The monomer of nucleic acids is the nucleotide. All nucleic acids are formed from a series of these nucleotides. Nucleotides consist of three parts: a five-carbon sugar, a phosphate group and a nitrogen base.

33. What is the building block of nucleic acids? Nucleotides

34. What are the three parts of this monomer?
 a. 5-carbon sugar b. phosphate group c. nitrogen base

 The structure of DNA resembles that of a twisted ladder, called a 'double helix.' The rails (outside) of the DNA ladder are made from alternating sugars, called deoxyribose, and phosphates (sugar-phosphate-sugar-phosphate...). The rungs (inside) of the ladder are made of four different kinds of nitrogen containing bases, with one base hanging off of the sugar portion of each rail. The four nitrogen containing bases are: Adenine (A), Thymine (T), Cytosine (C), and Guanine (G). The rails of the ladder are held together by the nitrogen containing bases: from one rail to the bases and from the bases to the other rail to form rungs. The bases from one side of the ladder attach to the bases hanging from the other side; this keeps the ladder together. The bases attach to one another in a very specific way: Adenine always attaches to Thymine, and Cytosine always attaches to Guanine.

35. Describe the structure and shape of DNA: a twisted ladder called a double helix.

36. What are the rails of the ladder made of? sugars phosphates

37. What are the four different nitrogen containing bases?

38. What part of the ladder do these bases form? the rungs

39. Cytosine always pairs with what base? Guanine

40. List four differences between DNA and RNA:
 a. DNA - deoxyribose RNA - ribose
 b. DNA - double helix RNA - single strand
 d. DNA - cannot leave nucleus RNA - can leave nucleus

41. List three similarities between DNA and RNA:
 a. contain sugar
 b. have bases C, G, A
 c. both contain hereditary information