Cellular Respiration
Stage 1: Glycolysis
What's the point?

The point is to make ATP!
Glycolysis

- Breaking down glucose
 - “glyco – lysis” (splitting sugar)
 - glucose → → → → → pyruvate
 - 6C → 2x 3C
 - ancient pathway which harvests energy
 - where energy transfer first evolved
 - transfer energy from organic molecules to ATP
 - still is starting point for **ALL** cellular respiration
 - but it’s inefficient
 - generate only **2 ATP** for every **1 glucose**
 - occurs in cytosol

In the cytosol? Why does that make evolutionary sense?

That’s not enough ATP for me!
Evolutionary perspective

- **Prokaryotes**
 - first cells had no organelles

- **Anaerobic atmosphere**
 - life on Earth first evolved *without free oxygen* \((O_2)\) in atmosphere
 - energy had to be captured from organic molecules in absence of \(O_2\)

- **Prokaryotes** that evolved glycolysis are ancestors of all modern life
 - **ALL** cells still utilize glycolysis

Enzymes of glycolysis are “well-conserved”

You mean we’re related? Do I have to invite them over for the holidays?
Overview

10 reactions

- Convert glucose (6C) to 2 pyruvate (3C)
- Produces: 4 ATP & 2 NADH
- Consumes: 2 ATP
- Net yield: 2 ATP & 2 NADH

DHAP = dihydroxyacetone phosphate
G3P = glyceraldehyde-3-phosphate
Glycolysis summary

ENERGY INVESTMENT

Glucose → 2 ADP (Discharged)

2 ADP → 2 ATP

ENERGY PAYOFF

2 NAD^+ (Charged) → 2 NADH

4 ADP (Charged) → 4 ATP

NET YIELD

Glucose → 2 Pyruvate + 2H_2O

2 ADP + 2P_i → 2 ATP

2 NAD^+ → 2 NADH + 2H^+

endergonic

invest some ATP

exergonic

harvest a little ATP & a little NADH

net yield

✓ 2 ATP

✓ 2 NADH
1st half of glycolysis (5 reactions)

Glucose “priming”

- get glucose ready to split
 - phosphorylate glucose
 - molecular rearrangement
- split destabilized glucose

1. Glucose
 - ATP
 - hexokinase
 \[\text{Glucose} + \text{ATP} \rightarrow \text{Glucose 6-phosphate} + \text{ADP} \]

2. Glucose 6-phosphate
 - phosphoglucone isomerase
 \[\text{Glucose 6-phosphate} \rightarrow \text{Fructose 6-phosphate} \]

3. Fructose 6-phosphate
 - ATP
 - phosphofructokinase
 \[\text{Fructose 6-phosphate} + \text{ATP} \rightarrow \text{Fructose 1,6-bisphosphate} + \text{ADP} \]

4. Fructose 1,6-bisphosphate
 - aldolase
 \[\text{Fructose 1,6-bisphosphate} \rightarrow \text{Dihydroxyacetone phosphate} + \text{Glyceraldehyde 3-phosphate (G3P)} \]

5. Glyceraldehyde 3-phosphate (G3P)
 - glyceraldehyde 3-phosphate dehydrogenase
 \[\text{Glyceraldehyde 3-phosphate (G3P)} + \text{NAD}^+ \rightarrow \text{Glyceraldehyde 3-phosphate (G3P)} + \text{NADH} \]

6. 1,3-Bisphosphoglycerate (BPG)
 - 1,3-Bisphosphoglycerate (BPG)
 \[\text{1,3-Bisphosphoglycerate (BPG)} + \text{P}_i + \text{NAD}^+ \rightarrow \text{1,3-Bisphosphoglycerate (BPG)} + \text{NADH} \]
2nd half of glycolysis (5 reactions)

Energy Harvest

- **NADH production**
 - G3P donates H
 - oxidizes the sugar
 - reduces NAD⁺
 - NAD⁺ → NADH

- **ATP production**
 - G3P → → → pyruvate
 - PEP sugar donates P
 - “substrate level phosphorylation”
 - ADP → ATP

Payola! Finally some ATP!
Substrate-level Phosphorylation

- In the last steps of glycolysis, where did the P come from to make ATP?
 - the sugar substrate (PEP)

P is transferred from PEP to ADP

- kinase enzyme
- ADP → ATP

I get it!
The P_i came directly from the substrate!
Energy accounting of glycolysis

- **Net gain** = 2 ATP + 2 NADH
 - some energy investment (-2 ATP)
 - small energy return (4 ATP + 2 NADH)
- **1 6C sugar → 2 3C sugars**

2 ATP
2 ADP

glucose → → → → pyruvate

6C

2 NAD^+
2 NADH

4 ADP
4 ATP

2x 3C

All that work! And that's all I get?

But glucose has so much more to give!
Is that all there is?

- Not a lot of energy...
 - for 1 billion years+ this is how life on Earth survived
 - no O_2 = slow growth, slow reproduction
 - only harvest 3.5% of energy stored in glucose
 - more carbons to strip off = more energy to harvest

$glucose \rightarrow \rightarrow \rightarrow \rightarrow pyruvate$

Hard way to make a living!
But can’t stop there!

raw materials → products

Glycolysis

\[
glucose + 2\text{ADP} + 2\text{P}_i + 2\text{NAD}^+ \rightarrow 2 \text{pyruvate} + 2\text{ATP} + 2\text{NADH}
\]

Going to run out of \text{NAD}^+

- without regenerating \text{NAD}^+, energy production would stop!
- another molecule must accept H from \text{NADH}
 - so \text{NAD}^+ is freed up for another round
How is NADH recycled to NAD$^+$?

Another molecule must accept H from NADH.

- With oxygen:
 - Aerobic respiration
 - NAD$^+$ is recycled via the Krebs cycle.

- Without oxygen (anaerobic respiration or fermentation):
 - Lactic acid fermentation
 - Alcohol fermentation

Which path you use depends on who you are...
Glycolysis- The Movie!

http://www.youtube.com/watch?v=ub1zTkZL5sE&feature=related
Fermentation (anaerobic)

- **Bacteria, yeast**

 \[
 \text{pyruvate} \rightarrow \text{ethanol} + \text{CO}_2
 \]

 daughter cell + energy

 - beer, wine, bread

- **Animals, some fungi**

 \[
 \text{pyruvate} \rightarrow \text{lactic acid}
 \]

 daughter cell + energy

 - cheese, anaerobic exercise (no O\textsubscript{2})
Alcohol Fermentation

\[\text{pyruvate} \rightarrow \text{ethanol} + \text{CO}_2\]

- **3C**
- **2C**
- **1C**

- **NADH**
- **NAD**

Dead end process

- at ~12% ethanol, kills yeast
- can’t reverse the reaction

Count the carbons!
Lactic Acid Fermentation

- Reversible process
 - once O_2 is available, lactate is converted back to pyruvate by the liver

\[
\text{pyruvate} \leftrightarrow \text{lactic acid} \quad O_2
\]

\[
\begin{align*}
3C & \quad \text{NADH} \\
3C & \quad \text{NAD}^+ \\
\end{align*}
\]

Count the carbons!

Recycle NADH

Animals, some fungi

2 ADP + 2 P_i → 2 ATP

Glucose → GLYCOLYSIS

2 NAD$^+$ → 2 NADH + 2 H$^+$

2 Pyruvate → 2 Lactate
Pyruvate is a branching point.

Pyruvate

- **Fermentation**
- **Anaerobic respiration**
- **Mitochondria**
- **Krebs cycle**
- **Aerobic respiration**
What's the point?

The point is to make ATP!
And how do we do that?

- **ATP synthase**
 - set up a H^+ gradient
 - allow H^+ to flow through ATP synthase
 - powers bonding of P_i to ADP

$$ADP + P_i \rightarrow ATP$$

But... Have we done that yet?
NO!
There’s still *more*
to my story!
Any Questions?