Throughout this packet — there will be blanks you are expected to fill in prior to coming to class. This packet follows your Larson Textbook. Do NOT throw away! Keep in 3 ring-binder until the end of the course.

Chapter 5.1 The Natural Logarithmic Function: Differentiation

Mathematician: ________________

Definition of Natural Logarithm Function

The natural logarithmic function is defined by

$$\ln x = \int_1^x \frac{1}{t} \, dt, \quad x > 0.$$

The domain of the natural logarithmic function is the set of all positive real numbers.

Properties of Logarithms

The domain is \((0, \infty)\) and the range is \((-\infty, \infty)\).

The function is continuous, increasing, and one-to-one.

The graph is concave downward.

- \(\ln(1) = 0\)
- \(\ln(ab) = \ln a + \ln b\)
- \(\ln(a^n) = n \ln a\)
- \(\ln\left(\frac{a}{b}\right) = \ln a - \ln b\)

The Definition of e

The letter \(e\) denotes the positive real number such that

$$\ln e = \int_1^e \frac{1}{t} \, dt = 1.$$
The Derivative of Natural Logarithmic Function

Let \(u \) be a differentiable function of \(x \).

1. \[
\frac{d}{dx}[\ln x] = \frac{1}{x}, \quad x > 0
\]
2. \[
\frac{d}{dx}[\ln u] = \frac{1}{u} \frac{du}{dx} = \frac{u'}{u}, \quad u > 0
\]

If \(u \) is a differentiable function of \(x \) such that \(u \neq 0 \), then

\[
\frac{d}{dx}[\ln|u|] = \frac{u'}{u}.
\]

Why Logarithmic Differentiation???? Log Properties simplify derivative, have function in exponent

Steps Logarithmic Differentiation

\[
y = \frac{(x-2)^2}{\sqrt{x^2+1}}; \quad x \neq 2
\]

Step 1: Write original equation

\[
y = \frac{(x-2)^2}{\sqrt{x^2+1}}
\]

Step 2: Take natural log of each side

\[
\ln y = \ln \left(\frac{(x-2)^2}{\sqrt{x^2+1}} \right)
\]

Step 3: Use logarithmic properties to expand

\[
\ln y = 2 \ln(x-2) - \frac{1}{2} \left(x^2 + 1 \right)
\]

Step 4: Implicit Differentiate

\[
y' = 2 \left(\frac{2}{x-2} - \frac{1}{2} \cdot \frac{2x}{x^2+1} \right)
\]

Step 5: Solve for \(y' \)

\[
y' = y \left(\frac{2}{x-2} - \frac{x}{x^2+1} \right)
\]

Step 6: If possible, substitute for \(y \)

\[
y' = \left(\frac{(x-2)^2}{\sqrt{x^2+1}} \right) \left(\frac{2}{x-2} - \frac{x}{x^2+1} \right)
\]

Step 7: Simplify

\[
y' = \frac{(x-2)(x^2+2x+2)}{(x^2+1)^{3/2}}
\]
5.2 The Natural Logarithmic Function: Integration

Log Rule for Integration

1. \(\int \frac{1}{x} \, dx = \ln|x| + C \)
2. \(\int \frac{1}{u} \, du = \ln|u| + C \)

Alternate form of Log Rule:

Integrals of Trig Functions:

\[\int \sin u \, du = -\cos u + C \]
\[\int \cos u \, du = \sin u + C \]
\[\int \tan u \, du = \int \frac{\sin u}{\cos u} \, du = -\ln|\cos u| + C \]
\[\int \cot u \, du = \int \frac{\cos u}{\sin u} \, du = \ln|\sin u| + C \]
\[\int \sec u \, du = \ln|\sec u + \tan u| + C \]
\[\int \csc u \, du = -\ln|\csc u + \cot u| + C \]
5.3 Inverse Functions

Definition of Inverse:
A function \(g \) is the inverse function of the function \(f \) if
\[
 f(g(x)) = x \quad \text{for each } x \text{ in the domain of } g
\]
and
\[
 g(f(x)) = x \quad \text{for each } x \text{ in the domain of } f.
\]
The function \(g \) is denoted by \(f^{-1} \) (read “\(f \) inverse”).

Reflexive Properties

The graph of \(f \) contains the point \((a, b)\) if and only if the graph of \(f^{-1} \) contains the point \((b, a)\).

Existence of Inverse

1. A function has an inverse function if and only if it is one-to-one.
2. If \(f \) is strictly monotonic on its entire domain, then it is one-to-one and therefore has an inverse function.

Steps for finding inverse

Step 1: Verify an inverse exists
Step 2: Solve for \(x = g(y) = f^{-1}(x) \)
Step 3: Exchange \(x \) and \(y \) \((y = f^{-1}(x))\)
Step 4: Verify \(f(f^{-1}(x)) = x \) and \(f^{-1}(f(x)) = x \)

Continuity and Differentiability of Inverse:

Let \(f \) be a function whose domain is an interval \(I \). If \(f \) has an inverse function, then the following statements are true.

1. If \(f \) is continuous on its domain, then \(f^{-1} \) is continuous on its domain.
2. If \(f \) is increasing on its domain, then \(f^{-1} \) is increasing on its domain.
3. If \(f \) is decreasing on its domain, then \(f^{-1} \) is decreasing on its domain.
4. If \(f \) is differentiable at \(c \) and \(f'(c) \neq 0 \), then \(f^{-1} \) is differentiable at \(f(c) \).
Derivative of Inverse

Let \(f \) be a function that is differentiable on an interval \(I \). If \(f \) has an inverse function \(g \), then \(g \) is differentiable at any \(x \) for which \(f'(g(x)) \neq 0 \). Moreover,

\[
g'(x) = \frac{1}{f'(g(x))}, \quad f'(g(x)) \neq 0.
\]

\[
(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}
\]

Steps for finding inverse value at a point

Find \(f^{-1}(x) \) at \(x = 3 \) when \(f(x) = \frac{1}{4}x^3 + x - 1 \)

Step 1: Set \(f(x) = x - \) value

\[f(3) = \frac{1}{4}x^3 + x - 1 \]

Step 2: Solve for \(x \)

\[x = 2 \]

Step 3: Identify Function \((x, f(x))\)

Function: \((2, 3)\)

Step 4: Use Inverse Relationship to identify inverse

Inverse point: \((3, 2)\)

\(f^{-1}(3) = 2 \)

Steps for finding derivative of an inverse function at a point \(x = c \)

Find \((f^{-1})'(x) \) at \(x = 3 \) when \(f(x) = \frac{1}{4}x^3 + x - 1 \)

Step 1: Calculate \(f^{-1}(x) \) at \(x \)

\[f^{-1}(3) = 2 \] (Above)

Step 2: Calculate \(f'(x) \)

\[f'(x) = \frac{3}{4}x^2 + 1 \]

Step 3: Evaluate \(f'(x) \) at \(f^{-1}(x) \) :: \(f'(f^{-1}(x)) \)

\[f'(2) = \frac{3}{4}(2)^2 + 1 = 4 \]

Step 4: Evaluate \(f^{-1}(x) = \frac{1}{f'(f^{-1}(x))} \)

\[(f^{-1})'(3) = \frac{1}{4} \]
5.4 Exponential Function: Differentiation and Integration

Definition of the Natural Exponential Function

The inverse function of the natural logarithmic function \(f(x) = \ln x \) is the **natural exponential function** and is denoted by

\[
f^{-1}(x) = e^x.
\]

That is,

\[
y = e^x \quad \text{if and only if} \quad x = \ln y.
\]

Inverse: \(\ln(e^x) = x \) and \(e^{\ln x} = x \)

Properties:

The domain of \(f(x) = e^x \) is \((-\infty, \infty) \), and the range is \((0, \infty) \).

The function \(f(x) = e^x \) is continuous, increasing, and one-to-one on its entire domain.

The graph of \(f(x) = e^x \) is concave upward on its entire domain.

\[
\lim_{x \to -\infty} e^x = 0 \quad \text{and} \quad \lim_{x \to \infty} e^x = \infty
\]

\[
e^{a+b} = e^a e^b
\]

\[
e^a e^{-b} = e^{a-b}
\]

Derivative of exponential

Let \(u \) be a differentiable function of \(x \).

1. \[
\frac{d}{dx}[e^x] = e^x
\]

2. \[
\frac{d}{dx}[e^u] = e^u \frac{du}{dx}
\]

Integral of exponential

1. \[
\int e^x \, dx = e^x + C
\]

2. \[
\int e^u \, du = e^u + C
\]
5.5 Bases Other than e

Definition of Exponential Function to Base a

If a is a positive real number ($a \neq 1$) and x is any real number, then the **exponential function to the base a** is denoted by a^x and is defined by

$$a^x = e^{(\ln a)x}.$$

If $a = 1$, then $y = 1^x = 1$ is a constant function.

Definition of Logarithmic Function to Base a

If a is a positive real number ($a \neq 1$) and x is any positive real number, then the **logarithmic function to the base a** is denoted by $\log_a x$ and is defined as

$$\log_a x = \frac{1}{\ln a} \ln x.$$

Properties of Inverse Functions

1. $y = a^x$ if and only if $x = \log_a y$
2. $a^{\log_a x} = x$, for $x > 0$
3. $\log_a a^x = x$, for all x

Derivatives

Let a be a positive real number ($a \neq 1$) and let u be a differentiable function of x.

1. $\frac{d}{dx} [a^x] = (\ln a)a^x$
2. $\frac{d}{dx} [a^u] = (\ln a)a^u \frac{du}{dx}$
3. $\frac{d}{dx} [\log_a x] = \frac{1}{(\ln a)x}$
4. $\frac{d}{dx} [\log_a u] = \frac{1}{(\ln a)u} \frac{du}{dx}$

Integral

$$\int a^x \, dx = \left(\frac{1}{\ln a} \right) a^x + C$$

$$\int a^u \, du = \left(\frac{1}{\ln a} \right) a^u + C$$

Limits involving e

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} \left(\frac{x + 1}{x} \right)^x = e$$

Compound Interest:

- $P =$ amount of deposit
- $T =$ number of years
- $A =$ balance after t years
- $R =$ annual interest rate (decimal form)
- $N =$ number of compoundings per year

- Compounded n times per year:
 \[A = P \left(1 + \frac{r}{n} \right)^{nt} \]

- Compounded continuously:
 \[A = Pe^{rt} \]
5.6 Inverse Trigonometric Functions: Differentiation

Definition of Inverse Trig Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = \arcsin x$ iff $\sin y = x$</td>
<td>$-1 \leq x \leq 1$</td>
<td>$-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$</td>
</tr>
<tr>
<td>$y = \arccos x$ iff $\cos y = x$</td>
<td>$-1 \leq x \leq 1$</td>
<td>$0 \leq y \leq \pi$</td>
</tr>
<tr>
<td>$y = \arctan x$ iff $\tan y = x$</td>
<td>$-\infty < x < \infty$</td>
<td>$-\frac{\pi}{2} < y < \frac{\pi}{2}$</td>
</tr>
<tr>
<td>$y = \arccot x$ iff $\cot y = x$</td>
<td>$-\infty < x < \infty$</td>
<td>$0 < y < \pi$</td>
</tr>
<tr>
<td>$y = \text{arcsec} x$ iff $\sec y = x$</td>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>$y = \text{arccosec} x$ iff $\csc y = x$</td>
<td>$</td>
<td>x</td>
</tr>
</tbody>
</table>
Properties of Inverse Trig Functions

If $-1 \leq x \leq 1$ and $-\pi/2 \leq y \leq \pi/2$, then
\[\sin(\arcsin x) = x \quad \text{and} \quad \arcsin(\sin y) = y. \]
If $-\pi/2 < y < \pi/2$, then
\[\tan(\arctan x) = x \quad \text{and} \quad \arctan(\tan y) = y. \]
If $|x| \geq 1$ and $0 \leq y < \pi/2$ or $\pi/2 < y \leq \pi$, then
\[\sec(\text{arcsec } x) = x \quad \text{and} \quad \text{arcsec}(\sec y) = y. \]

Derivatives of Inverse Trig Functions

\[\frac{d}{dx} [\arcsin u] = \frac{u'}{\sqrt{1 - u^2}} \quad \frac{d}{dx} [\arccos u] = -\frac{u'}{\sqrt{1 - u^2}} \]
\[\frac{d}{dx} [\arctan u] = \frac{u'}{1 + u^2} \quad \frac{d}{dx} [\arccot u] = -\frac{u'}{1 + u^2} \]
\[\frac{d}{dx} [\text{arcsec } u] = \frac{u'}{|u|\sqrt{u^2 - 1}} \quad \frac{d}{dx} [\text{arsec } u] = -\frac{u'}{|u|\sqrt{u^2 - 1}} \]
5.7 Inverse Trig Functions: Integration

Integrals involving inverse trigonometric functions

Let \(u \) be a differentiable function of \(x \), and let \(a > 0 \).

1. \[\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C \]

2. \[\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C \]

3. \[\int \frac{du}{u \sqrt{u^2 - a^2}} = \frac{1}{a} \text{arcsec} \frac{|u|}{a} + C \]

Techniques needed: